Особенности определения вместимости сосуда

Что такое вместимость сосуда

Вместимость сосуда — это объем его внутренней полости, определяемый по его геометрическим параметрам. Единица измерения объема в СИ — кубический метр, но в случае жидкости чаще используют литр.

Особенности расчета объема жидкости в сосуде

Жидкость по своим свойствам занимает промежуточное место между двумя другими агрегатными состояниями вещества — твердым и газообразным. Жидкости присущи некоторые свойства и твердого тела, и газа. Силы взаимного притяжения молекул в жидкостях достаточно велики, чтобы удерживать молекулы вместе, так что, в отличие от газов, жидкости имеют постоянный собственный объем.

В то же время эти силы недостаточны, чтобы держать молекулы в жесткой упорядоченной структуре, и потому у жидкостей нет постоянной формы: они принимают форму сосуда, в котором находятся.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Жидкость в сосуде оказывает постоянное давление на его стенки, поэтому на производстве, где необходимо регулярно измерять текущий объем жидкости в сосуде, часто используют гидростатические датчики давления.

За счет маленького диаметра их мембран итоговая погрешность измерения близится к нулю. Поэтому, зная давление в конкретный момент времени, можно вычислять уровень жидкости, т. е. высоту гидростатического столба. В формулу для расчета входят только плотность жидкости и ее давление:

\(h = \frac{p}{\rho \times g}.\)

\(p\) здесь — давление в паскалях, \(\rho\) — плотность, \(g\) — ускорение свободного падения, константа.

Зная габариты сосуда, несложно рассчитать объем жидкости в нем. Это необходимо, например, в пивоварении и виноделии, где обычно используются цилиндрические емкости с конусным дном, близкие по параметрам к идеальным геометрическим телам.

При решении логических учебных задач на переливание жидкости из одного сосуда в другой может пригодиться понимание взаимосвязи объема жидкости и параметров сосуда. А для задач по физике часто требуется рассчитать объем, который занимает жидкость в сосуде, через ее массу. На практике это действительно один из самых удобных способов, не требующий ни специальных датчиков, ни сложных расчетов. 

Задача

Найти объем керосина, зная массу одного и того же сосуда с ним, и без него. Масса пустого сосуда 440 грамм, полного — 600 грамм. 

Решение:

Плотность керосина можно узнать из справочной таблицы — 800 \(\frac{кг}{м^{3}}.\)
Вычислим массу керосина в сосуде: 600 – 440 = 160.
Подставим известные данные в формулу:

\(V = \frac{m}{\rho} = \frac{0,16}{800} = 0,0002 м^{3} = 200 см^{3}.\)

Ответ: 200 \(см^{3}.\)

Как определить вместимость сосудов разных форм

Вычисление объема параллелепипеда

Параллелепипед — это призма, объемная шестигранная фигура, в основании которой находится параллелограмм.

\(V = S_{осн} \times H. \)

Прямоугольный параллелепипед — это призма, у которой все грани являются прямоугольниками. Прямоугольный параллелепипед, все грани которого являются квадратами, — это куб.

Чтобы вычислить объем прямоугольного параллелепипеда, достаточно найти произведение трех его измерений:
 

\(V = AB \times AD \times AA_{1} = abc.\)
Объем куба равен кубу его стороны:
\(V = a^{3}.\)

Нахождение объема пирамиды

Пирамида — это многогранник, состоящий из основания — плоского многоугольника, вершины — точки, лежащей не в плоскости основания, и отрезков, которые соединяют вершину с углами основания. Высота пирамиды — это перпендикуляр, опущенный из вершины на плоскость основания.

\(V = \frac{1}{3} \times S_{осн} \times h.\)

Чтобы определить объем усеченной пирамиды, надо знать площадь обоих оснований — \(S_{1}\) и \(S_{2}\).

\(V = \frac{1}{3} \times h \times (S_{1} + S_{2} + \sqrt{S_{1} \times S_{2}}). \)

Как найти объем цилиндра

Цилиндр — это тело, состоящее из двух кругов, которые лежат в разных плоскостях и совмещаются параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.

\(R\) — радиус основания цилиндра, \(h\) — его высота, равная образующей оси.
\(V = S_{осн} \times h = \pi \times R^{2} \times h.\)

Если нужно найти объем усеченного цилиндра, то понадобится не только R — радиус основания, но и наибольшая и наименьшая образующие. Они обозначаются буквой l — \(l_{1}\) и  \(l_{2}\).
\(V = \pi \times R^{2} \times \frac{l_{1} + l_{2}}{2}.\)

Как высчитать объем конуса

Конус — это тело, состоящее из круга, точки, лежащей не в плоскости этого круга, и отрезков, которые соединяют вершину с точками основания.

\(V = \frac{1}{3} \times S_{осн} \times h = \frac{1}{3} \times \pi \times R^{2} \times h.\)

Чтобы найти объем усеченного конуса, понадобятся \(R_{1}\) и \(R_{2}\) — радиусы оснований, а также высота \(h\).

\(V = \frac{\pi \times h}{3} \times (R_1^2 + R_2^2 + R_1 \times R_2).\)

Нахождение объема шара

Шар — это тело, состоящее из всех точек пространства, находящихся на расстоянии не больше заданного радиуса от центральной точки.

\(R\) — радиус полукруга, равный радиусу шара.
\(V = \frac{4\pi \times R^{3}}{3}.\)

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»