Шкала электромагнитных излучений
Что такое шкала электромагнитных волн, описание
Все виды электромагнитных волн распространяются в вакууме с одинаковой скоростью. Но их частота и длина различаются.
Принцип построения
Электромагнитные излучения принято делить на частотные диапазоны в порядке возрастания длины волны, от гамма-лучей к радиоволнам. Длина волны обратно пропорциональна частоте и вычисляется через скорость света:
\(\nu\times\lambda\;=\;с.\)
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Границы между выделенными диапазонами условны, поэтому они могут перекрываться. Радио- и гамма-волны, расположенные по краям спектра, в принципе не имеют четких границ.
Кто создал шкалу
Электромагнитное взаимодействие между предметами подчиняется электромагнитной теории, базирующейся на уравнениях шотландского физика Джеймса Кларка Максвелла. В 1864 году тот построил теорию электромагнитных излучений, математически доказав существование колебаний в электрических и магнитных полях, скорость распространения которых совпадает со скоростью света. Так как до этого Максвелл занимался теорией цвета и цветным зрением, он описал видимый свет, как волны, соответствующие семи цветам радуги.
Максвелл высчитал длину волны каждого из основных цветов и предположил, что у спектра электромагнитных волн нет границ, они могут быть бесконечно малыми и бесконечно огромными. Невидимые инфракрасные и ультрафиолетовые лучи на тот момент уже были известны.
В 1888 году немецкий физик Генрих Герц открыл радиоволны и экспериментально доказал, что их природа тождественна природе световых волн, различается только длина волны. В 1895 году были открыты рентгеновские лучи. В 1900 году, исследуя радий, Поль Виллар обнаружил гамма-лучи.
Что образует шкалу
Диапазон по длине волн
Вдоль шкалы слева направо увеличивается длина волны. Каждая метка отличается от соседней в десять раз.
Диапазон по энергии квантов
Кроме частоты и длины, электромагнитная волна имеет и третью характеристику — энергию кванта (или фотона). Она пропорциональна частоте и высчитывается по формуле:
\(E\;=\;h\times\nu\)
где \(h\) — постоянная Планка, а греческая буква «ню» — частота.
Виды ЭМ волн
Видимая зона
Видимый свет состоит из лучей семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. У каждого цвета собственная длина волны.
Невозможно указать точные границы диапазона видимого излучения, так как уменьшение чувствительности при отдалении от точки максимума в зеленой части спектра происходит постепенно. Лучи света обычно имеют сложный спектральный состав, в который могут входить ультрафиолетовые и инфракрасные волны. Монохроматические излучения, смешиваясь, образуют оттенки, не относящиеся к семи основным цветам, например, розовый или бежевый.
Невидимая зона
Существование невидимых тепловых лучей предсказал французский физик Пьер Прево еще в 1791 году. В 1800 году они были обнаружены экспериментально при изучении температуры разных цветов и названы инфракрасными. Нижнюю часть инфракрасного спектра, наиболее удаленную от видимых лучей, называют микроволнами. Средняя часть спектра — излучение горячих тел, в том числе тела человека. Самые короткие инфракрасные волны схожи по своему поведению с лучами видимого света и могут быть обнаружены чувствительным фотооборудованием.
В 1801 году открыли лучи вне видимого спектра, схожие с фиолетовыми. Их фотоны обладают таким количеством энергии, что способны ионизировать атомы и тем самым вызывать химические процессы. Короткие ультрафиолетовые волны близки к рентгеновским и могут повреждать живые ткани. Волны средней длины не относятся к ионизирующим, но при длительном воздействии разрушают химические связи, например, вызывают рак кожи.
Рентгеновское излучение занимает диапазон между ультрафиолетовым и гамма-излучением: длина волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра. Излучение возникает при столкновении электронов и поверхности анода на большой скорости, когда атомы анода меняют внутреннюю структуру. Частота зависит от материала анода; излучение делят на мягкое, с большей длиной волны и меньшей частотой, и жесткое. Рентгеновские лучи могут проникать сквозь тело человека, поэтому используются в медицинской диагностике.
При распаде радиоактивных веществ ядра их атомов испускают гамма-излучение, которое также обозначают греческой буквой \gamma. Его частота определяется разностью энергий двух состояний ядра и рассчитывается по формуле:
\(f\;=\;(E1-E2)/h\)
где \(h\) — постоянная Планка.
Это самые короткие волны. Они состоят из фотонов сверхвысоких энергий и так интенсивно воздействуют на живые клетки, что могут останавливать их атипичное деление при онкологии.
Радиоволны почти не задерживаются атмосферой, поэтому их удобно использовать для передачи закодированной информации. Они значительно различаются по длине: от нескольких сантиметров до тысяч километров. Длинные волны отражаются от ионосферы планеты и таким образом могут огибать земной шар. Также их используют для изучения астрономических объектов.
Источники волн
Можно разделить источники на два типа — микроскопические и макроскопические. Если заряд, колеблющийся с определенной частотой, перемещается внутри атомов и молекул, источник считается микроскопическим. Искусственно созданные источники, в которых колеблются электроны проводников — макроскопические.
Где применяется шкала ЭМ излучений
Радиолюбителям и пользователям раций важно знать допустимые для переговоров диапазоны, а также полосы военных и аварийных частот, чтобы не занимать чужие выделенные каналы. Собирая собственный приемник или передатчик, нужно заранее определиться, на какие частоты он будет настроен, чтобы использовать соответствующие детали.
Космическое инфракрасное излучение регистрируют с помощью специальных телескопов, чтобы на основании полученных данных определять классы, возраст звезд, химический состав их атмосфер. Например, протозвезды, еще не достигшие главной последовательности на диаграмме Герцшпрунга-Расселла, интенсивно излучают энергию в инфракрасном спектре, но при этом полностью лишены теплового излучения.
Применение инфракрасной аппаратуры космического базирования позволяет решать практические задачи геологического картирования, изучать вулканы и геотермальные источники. Метеорологи, измеряя собственное инфракрасное излучение облачных образований, изучают свойства разных слоев атмосферы.
С помощью шкалы энергий излучения можно идентифицировать гамма-радиоактивные вещества, измеряя с помощью специальной установки поглощение испускаемых ими волн. УФ-спектроскопия и малоугловое рассеяние рентгеновских лучей применяются в прикладной химии для идентификации органических соединений.
Практическое применение шкалы в решении задач
Задача 1
На какой из аварийных частот судну лучше всего передавать сигнал бедствия, если оно находится в 230 км от берега?
Решение
Сверяемся с таблицей:
Переводим километры в морские мили (nm). 1 км = 0,54 nm, соответственно, 230 км = 124,19 nm. Судно находится в районе А2, в зоне действия береговой ПВ радиостанции, так что подавать сигналы бедствия должно по относящимся к ней частотам.
Задача 2
Изомерные 1,3-пентадиен и 1,4-пентадиен имеют в УФ-спектрах максимумы поглощения при 165 нм (спектр А) и 225 нм (спектр Б). Какому веществу принадлежит каждый спектр?
Решение
Двойные связи в 1,3-пентадиене (СН2=СН-СН=СН-СН3) сопряжены, а в 1,4-пентадиене (СН2=СН-СН2-СН=CH2) изолированы. Сопряженные системы поглощают свет в более длинноволновой области, чем системы с изолированными двойными связями. Поэтому спектр Б принадлежит 1,3-пентадиену, а спектр А — 1,4-пентадиену.
Заметили ошибку?
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Нашли ошибку?
Текст с ошибкой:
Расскажите, что не так