Какие физические явления называют тепловыми

Понятие теплового явления в физике — что это такое

В 1620 году философ Фрэнсис Бэкон первым предположил, что теплота связана с движением. Тем не менее почти до конца XVIII века все тепловые явления объясняли теорией теплорода, основателем которой называют Платона. Теплород считался рассеянным по всей материи, способным проникать в тела, «сочетаться» с ними и превращать твердые тела в жидкости, а жидкости — в газы.

В середине XVIII века возникла механическая теория тепла, какое-то время сочетавшаяся с материальной, или теорией теплорода. На первый взгляд кажется, что если рассматривать теплоту как материальную субстанцию (теплород), получаются одни законы, а если как род движения — совсем другие. Но в обоих случаях, при всей их несхожести, присутствует пара: закон сохранения плюс закон направленности процесса.

И все же с конца XVIII века механическая теория стала постепенно укореняться в физике и химии. А в начале ХХ века Альберт Эйнштейн закрыл вопрос о природе тепла, представив теорию броуновского движения молекул.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Какую роль играет в природе

Определение

Тепловые явления — это физические процессы, которые происходят с материальными телами при изменении температуры.

Жизнь на Земле напрямую зависит от главного природного источника тепла в нашей звездной системе — Солнца. Любое изменение температуры влияет на жизнь человека и окружающую его среду. Нагревание и замерзание воды, воздуха, смена агрегатных состояний любых веществ — все эти процессы связаны с температурой.

Признаки теплового явления, чем характеризуется

Признаки тепловых явлений:

  1. Изменение температуры.
  2. Изменение агрегатного состояния вещества.

При нагревании молекулы начинают быстрее обмениваться местами, при охлаждении — наоборот.
Среди самых распространенных тепловых явлений:

  • нагревание;
  • охлаждение;
  • кипение;
  • испарение;
  • конденсация;
  • плавление;
  • отвердевание.

Формулы тепловых процессов

Обычно для решения учебных задач хватает формул, описывающих сам процесс изменения температуры, а также процессы смены агрегатного состояния.

Формула, связывающая массу, теплоемкость и температуру, дает описание любого процесса нагревания или охлаждения:

\(Q = C \times m \times \triangle t\)

Q — обозначение количества теплоты, С — теплоемкости, m — массы вещества, \(\triangle\) t — разность температур.

Определение

Теплоемкость — количество теплоты, которое нужно затратить, чтобы нагреть тело на один градус. Теплоемкость — характеристика вещества, а не теплоты.

Для процессов со сменой агрегатного состояния вещества нужны специализированные формулы.

\(Q = \lambda \times m\)

описывает процессы плавления и отвердевания. \lambda здесь — удельная теплота плавления.

\(Q = L \times m\)

описывает процессы парообразования и конденсации. L здесь — удельная теплота парообразования.

Любые тепловые процессы подчиняются законам термодинамики. Закон сохранения энергии, или Первое начало термодинамики:
\(\triangle\) U = Q + W

Внутренняя энергия U определяется разностью между количеством теплоты Q, получаемой телом, и работой W, которую оно само совершает:
U = Q -W

Также U определяется суммой получаемого количества теплоты Q и совершенной над телом работы W':
U = Q + W'

Второе начало термодинамики: для любого сколь угодно сложного циклического обратимого процесса сумма величин Q/T с учетом знака теплоты (получаемой — с плюсом, отдаваемой — с минусом) равняется нулю.

Рудольф Юлиус Эммануэль Клаузиус предложил все превращения описать единым образом, с помощью одной величины — универсальной функции Q/T. Ее он назвал эквивалентом превращений, а Второе начало сформулировал как принцип эквивалентности превращений.

В любом тепловом процессе происходит двойное превращение теплоты и работы: сначала теплота преобразуется в работу, а потом наоборот — работа в теплоту. Причем механическая энергия может переходить в теплоту полностью, а тепловая в механическую — только частично.

Клаузиус ввел понятие энтропии \(\triangle S\) — величины, описывающей взаимные превращения теплоты и механической работы.

Оставаясь в рамках термодинамики, т. е. глядя на систему снаружи, это самое большее, что можно сказать о взаимоотношениях разных видов энергии — тепловой и механической.

Если же перейти к внутреннему устройству системы и рассматривать теплоту как беспорядочное движение составляющих систему частиц, то превращение теплоты в работу окажется преобразованием энергии хаотического движения молекул в работу системы в целом и наоборот. Тогда энтропию следует понимать как степень хаотичности, или неупорядоченности, такого движения.

Окончательно законы термодинамики, связанные с энтропией, можно сформулировать так: в любом необратимом процессе энтропия всегда возрастает, а в обратимом — остается постоянной.

\(\triangle S \geq 0. \)

При стремлении абсолютной температуры к нулю энтропия также стремится к нулю:

\(S \rightarrow 0\) при \(Т \rightarrow 0\)

Это Второе и Третье начала термодинамики.

Области применения теплового явления на практике

Тепловые процессы крайне важны в таких отраслях промышленности, как химическая, металлургическая, пищевая, деревообрабатывающая, машиностроительная и т. д. Наука метеорология занимается почти исключительно изучением тепловых процессов в атмосфере.

Насколько полезной была для вас статья?

Рейтинг: 2.55 (Голосов: 11)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»