Виды электромагнитных волн

Какие бывают виды электромагнитных волн

Определение

Электромагнитная волна — распространяющееся в пространстве возмущение электромагнитного поля.

Первыми материалами о существовании предполагаемых электромагнитных волн поделился английский ученый-физик Фарадей в 1832 году. Позднее Дж.Максвелл выстроил теорию электромагнитного поля, обосновав ее математическим путем. Выводы Максвелла подтвердил практическим экспериментом Герц, хотя первоначально он стремился их опровергнуть.

Успешной в изучении электромагнитных волн была деятельность П.Н. Лебедева.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Электромагнитное поле распространяется в пространстве посредством электромагнитных волн (ЭМВ). Те из них, которые возникают вокруг электрического заряда и способны распространяться вдаль от самого движущегося заряда, относят к понятию «излучение». При этом его сила по мере увеличения расстояния постепенно затухает. Исключение составляет вакуумная среда, т.е. пространство, в котором нет прочих тел или веществ, способных поглотить существующие либо испустить новые волны.

В физике в зависимости от диапазона существует следующая классификация видов ЭМВ:

  • радиоволны;
  • терагерцевые;
  • инфракрасные;
  • видимые (свет);
  • ультрафиолетовые;
  • рентгеновские;
  • гамма-излучение.
Примечание

Для гамма-излучения существует параллельный термин «жесткое».

Скорость распространения ЭМВ зависит от ее длины. В вакууме она равна скорости света, в других средах имеет более низкие значения. Этим показателем определяется, будет ли излучение подчиняться законам геометрической оптики. Это происходит тогда, когда расстояние в несколько раз превышает длину волны.

Еще одной важной характеристикой является частота излучения, которая обозначается λ.

Определение

Частота излучения равна числу гребней, проходящих через регистрационное устройство за единицу времени — секунду.

С учетом положений теории колебаний и электродинамики, для ЭМВ характерно существование 3х векторов, располагающихся перпендикулярно друг к другу. Это вектора:

  • волновой;
  • напряженности электрополя (обозначение Е) и магнитного поля (обозначение Н).

Классификация, частотные диапазоны

В основе классификации ЭМВ лежат характерные для каждой из подгрупп частотные диапазоны. Между ними не существует резких, четко очерченных границ, порой их значения могут перекрывать один другого. Скорость излучения постоянна только в вакууме, поэтому частота взаимосвязана с длиной ЭМВ в таких же условиях.

Радиоволны

Диапазон радиоволн занимает отрезок от низких до инфракрасных частот (до 3 ТГц). Их распространение происходит без волноводов, поэтому можно не учитывать атомистическое строение окружающей среды.

Радиоволны подразделяются на:

  • сверхдлинные;
  • длинные;
  • средние;
  • короткие;
  • ультракороткие.

Источником являются атмосферные, а также магнитные природные явления. Второй источник — радиосвязь. Ультракороткие волны образуются при физических явлениях — грозах.

Ультракороткие радиоволны

Длина волны ультракоротких лучей — 10м-1мм, сверхдлинных — более 10км. При этом частота ультракоротких — 30 МГц-300 ГГц, ультрадлинных — менее 30 кГц.

Ультракороткие радиоволны можно зарегистрировать при прохождении тока переменной частоты, что используется в радиотехнике, например, при сооружении антенн.

Группа подразделяется на метровые, деци-, санти-, мили-, субмилли- и микрометровые. Если длина волны менее 1-го метра (при частоте сверх 300 МГц), то она относится к микроволнам или СВЧ (сверх высоких частот).

Инфракрасное излучение

Начиная от красного цвета видимого света (длина 0,74 мкм) до микроволны (1-2 мм) занимает инфракрасное излучение. Это самый большой промежуток спектра, который могут излучать твердые и жидкие тела, имеющие определенную температуру. В таком случае про них говорят, что происходит излучение энергии в инфракрасном диапазоне. Важно, что длина волн, которые такие тела излучают, прямо пропорциональна температуре.

Примечание

Тепловое излучение тем интенсивнее, чем выше температура нагретого тела и короче длина ЭМВ.

В том свете, который видит человеческий глаз, содержится 7 основных цветов. При этом красные области спектра находятся после инфракрасных, а за фиолетовыми следуют ультрафиолетовые. Однако ни тот, ни другой край не способен видеть глаз человека.

Поверхность Солнца (фотосфера) имеет температуру 6000оС. Ее цвет — желтый, а источник излучения является оптическим. Наши органы чувств способны воспринимать такой участок спектра излучения.

Оптический диапазон излучения обусловлен тепловым движением молекул и атомов. При определенной скорости их движения тело нагревается и начинает светиться сначала красным светом, затем — желтым.

В окружающей среде чаще встречаются тела, которые излучают свет, состоящий из ЭВМ разной длины, сложного состава спектра. Их энергия воспринимается глазом человека и может ощущаться неоднозначно. Происходит это по причине различной чувствительности глаза к волнам неодинаковой длины.

Наряду с тепловым излучением, излучать оптическую энергию могут химические и биологические процессы. В качестве примера приема оптического излучения можно привести фотографирование.

Жесткие лучи

К данной группе относятся рентгеновское излучение. В естественных условиях оно образуется в ходе ионизации атомов, сопровождающей радиоактивный распад. Еще одной причиной образования является космическое излучение.   

Область рентгеновского излучения отделена от гамма-диапазона условно. Ориентировочно его энергия заключена в диапазоне 20 эВ-0,1 МэВ, в отличие от гамма-энергии, диапазон которой более 0,1 МэВ.

УФ лучи

«По соседству» с рентген-излучением находятся UV лучи. Их диапазон делится на ближний и дальний (вакуумный). Ближний занимает нишу 380-200 нм, дальний — 200-10 нм. Дальний также может называться вакуумным. Он интенсивно поглощается атмосферными массами и подвергается исследованиям в использованием вакуумного оборудования.

История открытия УФО связана с именем И.В. Риттера. который в 1801 году сделал вывод, что хлорид серебра под воздействием невидимого излучения с длиной волны, находящейся за пределами фиолетового света, разлагается быстрее.   

УФ излучение с длинными волнами

Данный поддиапазон содержит волны не интенсивной активности. Однако они также вызывают пигментацию кожи и в небольших дозах оздоравливают человеческий организм.

Длинноволновое УФ излучение характеризуется свечением определенных веществ, благодаря чему оно находит применение в изготовлении люминесцентных предметов, а также в качестве маркера в некоторых химических реакциях.  

УФ излучение со средней длиной волн

Под действием таких ЭМВ витамин D в организме человека превращается в физиологическую форму и служит для профилактики рахита. Средневолновое УФ излучение тонизирует системы организма, вызывает выработку мелатонина, однако губительно для растений.

УФ излучение с короткой длиной волн

Обладает бактерицидным эффектом, благодаря чему используется в обеззараживающих установках. С его участием идет дезинфекция и стерилизация медицинского оборудования и предметов быта.

УФ облучение поступает на землю от Солнца. Удельный вес различных вариантов данного излучения непостоянен, он зависит от многих факторов окружающей среды.

Существуют и искусственные доноры УФ излучения. Такие источники нашли применение в медицинских приборах, оборудовании санитарно-гигиенического профиля, а также в борьбе с вредителями сельского хозяйства.

Гамма-излучение

Относится к коротковолновым ЭМИ. Характеризуются корпускулярными свойствами и обладают значительным травмирующим воздействием на человеческий организм. Его нельзя почувствовать или ощутить. Это ионизирующее излучение, при котором устойчивые атомы превращаются в ионы. Скорость лучей находится в световом диапазоне.

Среди источников гамма-излучения можно назвать квазары и пульсары. Когда звезда преобразуется в сверхновую, наблюдается выделение энергии и гамма-излучение.

Что является источником электромагнитных волн

Синтезировать ЭМВ может электрический колебательный контур (проводник). Примером являются лампы, магнетроны, транзисторы. Наиболее простой источник — точечного характера. Его размеры намного меньше того расстояния, на протяжении которого действуют излучаемые им ЭМВ. Причем излучение происходит равномерно интенсивное во всех направлениях.

Источники электромагнитных волн
 

Самое коротковолновое излучение осуществляют атомные ядра, хотя большого различия между соседними по классификации группами нет. Обнаружение ЭМВ происходит по результатам воздействия на заряженные частицы.

Ученым удалось установить естественный волновой фон, в котором человек адаптировался. В то же время существование на Земле двух полюсов ведет к тому, что на человека постоянно оказывается излучение определенного спектра. Когда электромагнитное поле у живого индивидуума претерпевает изменения, у него могут возникнуть довольно серьезные проблемы со здоровьем.

Примечание

Исторически доказаны факты, что во время и после вспышек на Солнце часты катаклизмы и войны. Это результат сдвига в магнитном поле Земли.

Шкала и сфера применения

Расположение ЭМВ в порядке возрастания частоты (либо уменьшения λ) возникает система, которая называется шкалой электромагнитных волн. По сути, это — непрерывный ряд частот ЭМИ, который носит условный характер.

Видимый свет
 

Широко распространены приборы ночного видения, в основе работы которых лежит инфракрасное излучение. Разработаны и выпускаются специальные детекторы ИК лучей, которые помогают спасательным службам искать живые существа под завалами (в результате завалов при землетрясениях или прочих стихийных бедствиях). Сегодняшнее применение ЭМВ широко и разнообразно. Без них не обходится работа электротехнических приборов, например, сотовая связь, бескабельный интернет, радио и телевизионные приборы с пультом управления. Мы разогреваем пищу в микроволновой печи, а автомобилисты учитывают работу на трассе радаров.

ЭМВ появляются в окололампочном пространстве, а также рядом с работающими телевизорами и мониторами.

Широкая сфера применения у УФ лучей. В определенном диапазоне они обладают антисептическим и дезинфицирующим действием, что используется в борьбе с инфекциями. В банковских структурах, опираясь на механизм их действия, проверяют подлинность денежных купюр.

Поскольку УФ лучи оказывают губительное действие на любую живую клетку, в т.ч. бактерии и вирусы, то механизм УФ облучения используется для стерилизации медицинских изделий, оборудования, рабочих поверхностей.

Примечание

Если бы над земной корой отсутствовала атмосфера, жесткие УФ лучи убили бы все живое на Земле. Однако озоновый слой атмосферы способен поглощать эти лучи, выбирая их из спектра радиации Солнца. Несмотря на это, часть жестких УФ лучей все-таки проникает на поверхность Земли и способна вызвать ожоги, а также озлокачествление клеток кожи.

Велико значение в медицине рентгеновских лучей. Проникая через мягкие ткани, они дают врачу представление о костной патологии, помогают диагностировать переломы и искривления.

Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы.

Космическая аппаратура использует устройства гамма-телескопы.

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»