Определение силы сопротивления в физике и её формула

Что такое сила сопротивления в физике

Сила сопротивления — сила, которая возникает во время движения тела в жидкой или газообразной среде и препятствует этому движению.

Важно уметь отличать силу сопротивления от силы трения. Во втором случае рассматривается характер взаимодействия твердых тел друг с другом. Таким образом, трение можно наблюдать, когда какой-либо предмет перемещается по поверхности другого. Вектор этой силы будет направлен в противоположную сторону направления движения.

Для того чтобы рассчитать силу сопротивления необходимо умножить коэффициент сопротивления материала на силу, провоцирующую перемещение этого предмета.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Примечание

В качестве примера силы сопротивления можно рассмотреть движение поезда. Воздух, окружающий состав, замедляет скорость его перемещения, то есть возникает сила сопротивления.

От чего зависит в механике и динамике

Сила сопротивления зависит от нескольких факторов. На ее величину оказывают влияния следующие характеристики:

  1. Особенности среды и показатели ее плотности, к примеру, жидкость обладает большей плотностью, чем газообразное вещество.
  2. Форма тела, так как предметы, обладающие обтекаемыми вытянутыми вдоль направления движения формами подвержены меньшему сопротивлению, чем тела с множеством плоскостей, расположенных перпендикулярно движению.
  3. Скорость перемещения тела.

Силу сопротивления можно наблюдать опытным путем. К примеру, если предмет переместился на величину пути l , когда на него воздействует сила сопротивления, обозначение которой представлено, как \($$F_{r}$$\), затрачивается работа, которую можно рассчитать по формуле:

\($$A=F_{r}\times l$$\)

В случае, когда площадь поперечного сечения движущегося предмета равна S, он будет сталкиваться с частицами, объем которых составляет Sl. Полную массу этих частиц можно представить, как \($$\rho_{ a}\times Sl$$\). Если частицы полностью увлекаются телом, они приобретают скорость V. Кинетическую энергию можно рассчитать по формуле:

\($$K=\frac{\rho_{ a}\times Sl\times V^{2}}{2}$$\)

Энергию создают внешние силы за счет своей работы с мощностью по определению силы сопротивления. Откуда, A=K. Таким образом,

\($$F_{r}=\frac{\rho_{ a}\times S\times V^{2}}{2}$$\)

В этом случае зависимость силы сопротивления от скорости перемещения объекта возрастает и становится пропорциональна ее второй степени. В отличие от силы внутреннего трения ее обозначают, как силу динамического лобового сопротивления.

Следует отметить, что теория, в которой частицы среды полностью увлекаются транспортируемыми телами, преувеличена. В условиях реального времени любой движущийся предмет обтекаем потоком, который снижает воздействие на него сил сопротивления. Поэтому при расчетах нередко используют коэффициент сопротивления С, обозначая силу лобового сопротивления формулой:

\($$F_{r}=C\times S\times \frac{\rho_{ a}\times V^{2}}{2}$$\)

Разновидности сил сопротивления

Существует несколько типов силы сопротивления, отличающихся по характеру воздействия на движущиеся предметы.

Сила сопротивления качению

Сила сопротивления качению обозначается, как Pf. В данном случае сила определяется несколькими факторами:

  • разновидность и состояние опоры, по которой перемещается объект;
  • скорость движения тела;
  • давление воздуха и другие параметры окружающей среды.

Состояние и тип опорной поверхности определяет величину коэффициента сопротивления качению, который обозначается f. Если в среде повышается температура, и возрастает давление, то данный показатель будет уменьшаться.

Сила сопротивления воздуха

Сила сопротивления воздуха или величина лобового столкновения Pв образуется в результате различных показателей давления. Данная характеристика напрямую зависит от интенсивности вихреобразования спереди и сзади движущегося предмета. Указанные параметры определяются формой перемещающегося тела.

Примечание

Большее влияние на силу сопротивления будет оказывать вихреобразование в передней части объекта. Если плоскостенную фигуру закруглить спереди и сзади, то получится снизить сопротивление до 72%.

Рассчитать силу лобового сопротивления можно по формуле:

\($$P=cx\times p\times F_{b}$$\)

сх — обтекаемость или коэффициент лобового сопротивления; p — плотность воздуха; Fв — площадь лобового сопротивления (миделевого сечения).

Во время поступательного движения масса объекта встречает сопротивление разгону, то есть ускорению. Найти данную силу можно с помощью второго закона Ньютона.

\($$Pj=m\times dVdt$$\)

где m выражает массу движущегося объекта, а \(dVdt\) обозначает ускорение центра масс.

Как найти трение

Определить силу сопротивления можно, если применить третий закон Ньютона. Для того чтобы предмет равномерно перемещался по опоре в горизонтальном направлении, к нему необходимо приложить силу, соизмеримой с силой сопротивления. Корректно рассчитать данные величины можно с помощью динамометра. Сила сопротивления будет прямо пропорциональна массе объекта. Более точные расчеты производятся с учетом u коэффициента, который зависит от следующих факторов:

  • материал, из которого изготовлено опорное основание;
  • материал, из которого состоит перемещаемое тело.

Рассчитывая силу сопротивления, используют постоянную величину g, равную 9,8 метров на сантиметр в квадрате. При этом если движение тела происходит на определенной высоте, на него оказывает воздействие сила трения воздуха. Данная величина зависит от скорости, с которой движется предмет. Искомая величина определяется с помощью следующей формулы только при условии, что предмет перемещается на небольшой скорости:

\($$F=V\times a$$\)

где V является скоростью перемещения тела, a — коэффициентом сопротивления среды.

Силы сопротивления при больших скоростях

Сила сопротивления, оказывающая воздействие на движущиеся предметы с малой скоростью, зависит от нескольких внешних факторов. К таким условиям относятся:

  • вязкость жидкости;
  • скорость перемещения тела;
  • линейные размеры движущегося предмета.

В условиях больших скоростей характер действия силы сопротивления несколько изменяется. Законы вязкого трения в этом случае не применяются для воздуха и воды. Если скорость предмета составляет 1 сантиметр в секунду, то данные факторы учитываются лишь тогда, когда тела обладают крошечными размерами, измеряемыми в миллиметрах.

Примечание

Если пловец ныряет в воду, то на него будет действовать сила сопротивления. Однако в данном случае закон вязкого трения не будет действовать.

Объект, двигаясь с малой скоростью в водной среде, плавно обтекается жидкостью. Сила сопротивления в данном случае будет рассчитываться, как сила вязкого трения. Если скорость большая, то с задней части перемещающегося тела наблюдается более сложное движение жидкости с образованием необычных по форме фигур, вихрей, колец. Картина таких струек будет постоянно изменяться. Движение такого характера называется турбулентным. Турбулентное сопротивление все еще будет определяться скоростью и размерами тела, но не так, как при вязком сопротивлении. В данном случае сила рассчитывается пропорционально квадрату скорости и линейным размерам предмета. Вязкость водной среды более не имеет решающего значения, определяющая функция переходит к показателю плотности.

Сила турбулентного сопротивления рассчитывается по формуле:

\($$F=p\times V^{2}\times L^{2}$$\)

где V обозначает показатели скорости движения, L — соответствует линейным размерам тела, p — равна плотности среды.

Насколько полезной была для вас статья?

Рейтинг: 1.17 (Голосов: 6)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»