Как вычислить выборочную дисперсию
Выборочная дисперсия, описание
Выборочная дисперсия является сводной характеристикой для наблюдения рассеяния количественного признака выборки вокруг среднего значения.
Выборочная дисперсия – это среднее арифметическое значений вариантов части отобранных объектов генеральной совокупности (выборки).
Связь выборочной и генеральной дисперсии
Генеральная дисперсия представляет собой среднее арифметическое квадратов отступлений значений признаков генеральной совокупности от их среднего значения.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Генеральная совокупность – это комплекс всех возможных объектов, относительно которых планируется вести наблюдение и формулировать выводы.
Выборочная совокупность или выборка является частью генеральной совокупности, выбранной для изучения и составления заключения касательной всей генеральной совокупности.
Как вычислить выборочную дисперсию
Выборочная дисперсия при различии всех значений варианта выборки находится по формуле:
\({\widehat D}_В=\frac{\displaystyle\sum_{i-1}^n{(x_i-{\overline x}_В)}^2}n\)
Для значений признаков выборочной совокупности с частотами n1, n2,…,nk формула выглядит следующим образом:
\({\widehat D}_В=\frac{\displaystyle\sum_{i-1}^kn_i{(x_i-{\overline x}_В)}^2}n\)
Квадратный корень из выборочной дисперсии характеризует рассеивание значений вариантов выборки вокруг своего среднего значения. Данная характеристика называется выборочным средним квадратическим отклонением и имеет вид:
\({\widehat\sigma}_В=\sqrt{{\widehat D}_В}\)
Упрощенный способ вычисления выборочной или генеральной дисперсии производят по формуле:
\(D=\overline{x^2}-\left[\overline x\right]^2\)
Если вариационный ряд выборочной совокупности интервальный, то за xi принимается центр частичных интервалов.
Пример
Найти выборочную дисперсию выборки со значениями:
- xi: 1, 2, 3, 4;
- ni: 20, 15, 10, 5.
Решение
Для начала необходимо определить выборочную среднюю:
\({\overline x}_В=\frac1{50}(1\cdot20+2\cdot15+3\cdot10+4\cdot5)=\frac1{50}\cdot100=2\)
Затем найдем выборочную дисперсию:
\(D_В=\frac1{50}({(1-2)}^2\cdot20+{(2-2)}^2\cdot15+{(3-2)}^2\cdot10+{(4-2)}^2\cdot5)=1\)
Исправленная дисперсия
Математически выборочная дисперсия не соответствует генеральной, поскольку выборочная используется для смещенного оценивания генеральной дисперсии. По этой причине математическое ожидание выборочной дисперсии вычисляется так:
\(M\left[D_B\right]=\frac{n-1}nD_Г\)
В данной формуле DГ – это истинное значение дисперсии генеральной совокупности.
Исправить выборочную дисперсию можно путем умножения ее на дробь:
\(\frac n{n-1}\)
Получим формулу следующего вида:
\(S^2=\frac n{n-1}\cdot D_В=\frac{\displaystyle\sum_{i=1}^kn_i{(x_i-{\overline x}_В)}^2}{n-1}\)
Исправленная дисперсия используется для несмещенной оценки генеральной дисперсии и обозначается S2.
Среднеквадратическая генеральная совокупность оценивается при помощи исправленного среднеквадратического отклонения, которое вычисляется по формуле:
\(S=\sqrt{S^2}\)
При нахождении выборочной и исправленной дисперсии разнятся лишь знаменатели в формулах. Различия в этих характеристиках при больших n незначительны. Применение исправленной дисперсии целесообразно при объеме выборки меньше 30.
Для чего применяют исправленную выборочную дисперсию
Исправленную выборочную используют для точечной оценки генеральной дисперсии.
Пример
Длину стержня измерили одним и тем же прибором пять раз. В результате получили следующие величины: 92 мм, 94 мм, 103 мм, 105 мм, 106 мм. Задача найти выборочную среднюю длину предмета и выборочную исправленную дисперсию ошибок измерительного прибора.
Решение
Сначала вычислим выборочную среднюю:
\({\overline x}_В=\frac{92+94+103+105+106}5=100\)
Затем найдем выборочную дисперсию:
\(D_В=\frac{\displaystyle\sum_{i=1}^k{(x_i-{\overline x}_В)}^2}n=\frac{{(92-100)}^2+{(94-100)}^2+{(103-100)}^2+{(105-100)}^2+{(106-100)}^2}5=34\)
Теперь рассчитаем исправленную дисперсию:
\(S^2=\frac5{5-1}\cdot34=42,5\)
Заметили ошибку?
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Нашли ошибку?
Текст с ошибкой:
Расскажите, что не так