Определение позиционной и непозиционной системы счисления

Системы счисления

Определение

Система счисления — метод записи чисел с помощью письменных знаков.

Системы делятся на позиционные, непозиционные и смешанные. Смысл их в том, чтобы дать каждому числу уникальное представление. В разных системах одно и то же число может быть записано по-разному. Символы, используемые для записи чисел, называют цифрами, даже когда система использует в дополнение к арабским цифрам или вместо них буквы латинского алфавита.

Что такое позиционная система

Определение

Позиционная система счисления — система счисления, в которой значение каждого числового знака в записи числа зависит от его позиции.

В позиционной системе количественный эквивалент каждой цифры зависит от места ее записи в коде числа. Любое целое число x в d-ичной позиционной системе счисления является конечной линейной комбинацией степеней числа d:

\(х\;=\;\sum_{k=0}^{n-1}\;a_kd^k\)

\(a_k\) в этом выражении — целые числа, удовлетворяющие неравенству \(0\;\leq\;a_k\;\leq\;(d\;-\;1)\).

Примечание

k — показатель разряда.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В общем случае представить произвольное число x в системе счисления с заданным основанием d означает расписать его по формуле:

\(x\;=\;a_x\times d^x\;+\;a_{x-1}\times d^{x-1}\;+\;...\;+\;a_2\times d^{2\;}+\;a_1\times d\;+\;a_0\)

Таким образом, в любой позиционной системе число может быть представлено в виде многочлена.

Пример

\(2872\;=\;2000\;+\;800\;+\;70\;+\;2\;=\;2\;\times\;10^3\;+\;8\;\times\;10^2\;+\;7\;\times\;10^1\;+\;2\;\times\;10^0\)

Что такое непозиционная система

Определение

Непозиционная система — это такая система счисления, в которой положения цифры в записи числа не зависит величина, которую она обозначает.

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от ее места в коде числа.

Еще до нашей эры разные народы независимо друг от друга отказывались от унарной системы счисления, в которой количество предметов обозначали таким же количеством одинаковых значков, и переходили к более удобным системам. Например, у египтян система счисления была десятичной, но запись числа составлялась только из иероглифов 1, 10, 100, 1000. Их нужно было складывать, поэтому не имело значения, в каком порядке они записаны.

Отличие между системами

Чтобы пользоваться позиционной системой счисления, достаточно знать, как в ней изображаются цифры и что они обозначают, а также ее основание — количество уникальных цифр. Порядок записи во всех позиционных системах одинаков.

В непозиционных системах количество цифр-символов может достигать десятков и даже сотен, так как для записи больших чисел постоянно приходится вводить новые символы. Для чтения числа нужно знать правила его записи. Часто приходится выполнять арифметические операции, например, вычитание и сложение.

Достоинства позиционной системы

Простое выполнение подсчета

У всех позиционных систем одни и те же алгоритмы выполнения арифметических действий. Также в позиционных системах удобно работать с дробями и отрицательными числами, которые зачастую просто невозможно представить в непозиционных системах.

Главные свойства позиционных систем:

  • основание всегда записывается внутри системы как 10 (утверждение неприменимо к унарной системе счисления);
  • числа можно сравнивать поразрядно, дополнив ведущими нулями до равной длины;
  • сложение и вычитание можно выполнять, зная только таблицу сложения однозначных чисел.

Малое количество символов в записи

Позиционные системы используют только десять арабских цифр. Системы с основанием больше десяти добавляют к цифрам 26 латинских букв. В некоторых системах используют круглые и квадратные скобки.

Чем больше основание системы счисления, тем меньшее количество цифр понадобится для записи числа. Числа, состоящие из трех разрядов в десятичной системе, могут иметь всего два разряда в шестнадцатеричной.

Основание позиционной системы

Обычно за основание принимают целое натуральное число. Но существуют также системы с дробным или отрицательным основанием. Последние называют нега-позиционными.

Определение

Основание позиционной системы счисления — это количество уникальных символов, изображающих ее цифры.

Таким образом, чтобы найти эту главную характеристику любой позиционной системы, достаточно подсчитать количество цифр в ней. 

Классификация позиционных систем

Двоичные

Определение

Двоичная система —  система счисления, в которой в качестве базовых чисел выбираются степени числа два.

Чтобы не путать их с числами, записанными в десятичной системе счисления, справа внизу указывают основание системы счисления. Обычно число при этом заключают в скобки.

Двоичную систему использовали задолго до возникновения информационных технологий. Во втором тысячелетии до нашей эры народы Южной Америки кодировали двоичной системой свои записи, в том числе и не числовые. Узелок и ровный участок нити чередовались друг с другом.

В современной двоичной системе, на основе которой был создан телеграф, а позже — реле и переключатели, единица обозначает наличие сигнала, ноль — его отсутствие. Цифровые электронные схемы работают по тому же принципу. Также на нем основаны сигнальные системы, использующиеся до сих пор, например, азбука Морзе.

Восьмеричные

Когда-то два индейских племени решили, что им удобно при счете смотреть на восемь промежутков между пальцами, а не на сами пальцы. Восьмеричная система счисления отразилась в их языках, в которых только восемь слов, обозначающих цифры.
В двадцатом веке, когда для написания программ требовалось зашифровывать все больше информации в двоичной системе и упростить вычисления для людей, придумали альтернативную систему, которая позволила сократить количество цифр в коде. Число восемь — это два в кубе, поэтому перевести записи из двоичной системы в восьмеричную и обратно проще, чем в десятичную.

Десятичные

Элементы числовой базы, или ключевые числа, в десятичной системе счисления представляют собой степени десяти: 10 = 10^1, 100 = 10^2, 1000 = 10^3.
В системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число 10 — основание системы счисления. Цифры от 0 до 9 представляют собой коэффициенты разложения числа по степеням десяти.

Родиной десятичной системы счисления считается Индия, хотя еще в вавилонской цивилизации с ее шестидесятеричной системой использовались закодированные десятичные цифры, а инки в своей узелковой письменности кодировали информацию десятью цветами. Но именно в Индии начали строго соблюдать порядок разрядов числа при записи и ставить ноль, чтобы избежать путаницы. Примерно в середине VIII века эту систему стали использовать другие страны. В Европе она распространилась к XVI веку и была названа «арабской».

Шестнадцатеричные

Шестнадцатеричные системы, как и восьмеричные, появились для упрощения взаимодействия с компьютером. Кроме арабских цифр, в них используются еще и латинские буквы от А до F. В разных языках программирования для записи чисел в шестнадцатеричной системе разные правила, называемые синтаксисом.

Пятеричная

Система, связанная с количеством пальцев на одной руке, использовалась в Китае и у некоторых племен Африки. В китайском языке у иероглифов, обозначающих цифры от шести до девяти, был один и тот же знак в начале — сокращенное обозначение цифры пять. Для записи чисел в этой системе используются цифры 0, 1, 2, 3, 4.

Двенадцатеричная

Если большим пальцем руки сосчитать число фаланг на других пальцах этой руки, получится двенадцать. Группы по двенадцать предметов называли во многих европейских языках словами, схожими с русским словом «дюжина»: duodezim на латыни, douzaine на французском, dozzina на итальянском, dozen на английском. Римляне пользовались двенадцатеричными дробями, \frac1{12} они называли унцией.

В Европе счет дюжинами долгое время, вплоть до XVIII века, сохранялся наравне с десятеричной системой. Дюжина дюжин составляла гросс (от немецкого слова «большой»), дюжина гроссов — массу. Признаки влияния числа 12 заметны в англо-американской системе линейных мер, в которой 1 фут равен 12 дюймам, 1 дюйм — 12 линиям, 1 линия — 6 точкам.

Шестидесятеричная

Первой позиционной системой счисления считается шестидесятеричная система в Древнем Вавилоне. Ее основание до сих пор применяют для измерения времени. Система счисления времени — смешанная, но для перевода минут в секунды или часы потребуется именно шестидесятеричная система.

Для измерения углов и записи координат (широты, долготы) тоже используют эту систему, так как изначально астрономические координаты записывали в шестидесятеричных дробях. По аналогии с часом градус делят на шестьдесят минут, минуту — на шестьдесят секунд.

Двадцатеричная

Двадцатеричную систему называют вигезимальной. Эта система, как и десятеричная, связана с количеством пальцев, поэтому многие народы изобрели ее независимо друг от друга. Основание 20 сохранилось в лингвистической структуре их языков, именно на нем основана система счета в разговорной речи. Например, во французском языке «восемьдесят» состоит из слов «четыре» и «двадцать».

Римская система счисления

Описание

Римская система счисления относится к непозиционным. Она известна всему миру и широко применяется до сих пор. Это связано не с какими-то особыми достоинствами, а скорее с политическим и культурным влиянием Древнего Рима на европейскую цивилизацию.
Сейчас римская система используется в русском языке для обозначения:

  • веков;
  • месяцев (при этом день и год пишут арабскими цифрами);
  • валентности химических элементов;
  • порядковых номеров монархов;
  • номеров корпусов Вооруженных сил;
  • групп крови;
  • номеров томов многотомных книг, иногда номеров глав или параграфов;
  • важных событий (XX съезд КПСС, II Мировая война, ХХ Олимпиада).

В других странах свои особенности употребления римских цифр: в Европе ими часто записывают номер года, в Латвии — день недели.
Считается, что в основу римских цифр легли жесты:

  • I — единица, один палец;
  • V — пять, ладонь;
  • Х — десять, две скрещенные ладони.

100 и 1000 обозначаются буквами C и М — первыми буквами соответствующих латинских слов.

Основные характеристики

Для записи чисел используют семь букв латинского алфавита:

  • I — 1;
  • V — 5;
  • X — 10;
  • L — 50;
  • C — 100;
  • D — 500;
  • M — 1000.

Сначала записываются тысячи, потом сотни, потом десятки и единицы. Ноль в системе отсутствует, но раньше вместо него использовали букву N. От позиционных систем римская отличается использованием принципов сложения и вычитания. Когда большая цифра стоит перед меньшей, они складываются. Когда меньшая стоит перед большей — вычитаются.

Таблица с примерами позиционных систем счисления

Таблица
 

 

Насколько полезной была для вас статья?

Рейтинг: 3.67 (Голосов: 3)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»