Координаты середины отрезка
Что такое середина отрезка
Отрезок — это геометрическая фигура, представляющая собой ограниченный с двух сторон участок прямой.
Пусть точки A и B не совпадают. Если провести через них прямую, то образуется отрезок AB или BA, который ограничен точками A и B. Данные точки являются концами отрезка.
Длина отрезка — это расстояние между двумя точками, ограничивающими данный отрезок. Длина отрезка AB обозначается как модуль данной геометрической фигуры, то есть |AB|.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Серединой отрезка является такая точка C, принадлежащая отрезку AB, которая расположена в центре данного отрезка, то есть |AC|=|CB|.
Правила нахождения координат середины отрезка, формулы
Середина отрезка на координатной прямой
Предположим, что несовпадающие точки A и B лежат на координатной прямая Ох. Известно, что A и B соответствуют действительные числа xA и xB, а точка С делит AB пополам. Определите координату xC, соответствующую С.
Так как C — это середина AB, то справедливо следующее равенство:
\(\left|AC\right|=\left|CB\right|\)
Вычислим расстояние между A и C, а также между C и B. Для этого определим модуль разницы их координат. На математическом языке это будет иметь вид:
\(\left|AC\right|=\left|CB\right|\Leftrightarrow\left|x_C-x_A\right|=\left|x_B-x_C\right|\)
Опустим знак модуля и получим справедливость двух выражений:
\(x_C-x_A=x_B-x_C\)
\(x_C-x_A=-\left(x_B-x_C\right)\)
Исходя из первого равенства, получим формулу нахождения xC, согласно которой координата точки С равна половине суммы координат A и B:
\(x_C=\frac{x_A+x_B}2\)
Следствием второго равенства будет следующее утверждение:
\(x_A=x_B\)
Это противоречит заданным условиям, следовательно, формула определения координат середины отрезка выглядит так:
\(x_C=\frac{x_A+x_B}2\)
Середина отрезка на плоскости
В декартовой системе координат Oxy расположены две точки A(xA,yA) и B(xB,yB), которые не совпадают между собой. Точка C является центром AB. Необходимо произвести вычисление координат xC и yC, соответствующих С.
Пусть произвольные точки А и В лежат на одной координатной прямой, а также не принадлежат прямым, располагающимся перпендикулярно к оси абсцисс или ординат. Опустим от заданных точек A, B, C перпендикуляры на ось x на ось y. Полученные точки пересечения с осями координат Ax, Ay; Bx, By; Cx, Cy — это проекции исходных точек.
По построению прямые AAx, BBx, CCx относительно друг друга находятся параллельно. Прямые AAy, BBy, CCy не пересекаются, то есть являются параллельными. Согласно равенству AB=BC, далее применим теорему Фалеса и получим:
\(A_xC_x=C_xB_x\)
\(A_yC_y=C_yB_y\)
Это значит, что Cx и Cy являются серединами отрезков AxBx и AyBy соответственно. Теперь воспользуемся формулой определения координат середины отрезка на координатной прямой и получим:
\(x_C=\frac{x_A+x_B}2\)
\(y_C=\frac{y_A+y_B}2\)
Данные формулы подходят для вычисления координат середины отрезка в случае его расположения на осях абсцисс и ординат, а также при перпендикулярности одной из них. Следовательно, координаты центра отрезка AB, находящегося в плоскости и ограниченного точками A(xA,yA) и B(xB,yB), вычисляются следующим образом:
\(\left(\frac{x_A+x_B}2,\frac{y_A+y_B}2\right)\)
Середина отрезка в пространстве
Допустим, что в трехмерной системе координат Oxyz любые две точки с соответствующими им координатами A(xA, yA, zA) и B(xB, yB, zB). C(xC, yC, zC) — это центр АВ. Задание заключается в том, чтобы определить xC, yC, zC.
Проведем от исходных точек перпендикуляры к прямым Ox, Oy и Oz. Образовавшиеся точки пересечения с координатными осями — Ax, Ay, Az; Bx, By, Bz; Cx, Cy, Cz — проекции точек A, B, C на них.
Воспользуемся теоремой Фалеса:
\(\left|A_xC_x\right|=\left|C_xB_x\right|\)
\(\left|A_yC_y\right|=\left|C_yB_y\right|\)
\(\left|A_zC_z\right|=\left|C_zB_z\right|\)
Исходя из полученных равенств следует, что Cx, Cy, Cz — делят AxBx, AyBy, AzBz пополам, то есть являются серединами перечисленных отрезков. Значит, для определения координат центра AB с концами A(xA,yA,zA) и B(xB,yB,zB) используем формулу:
\(\left(\frac{x_A+x_B}2,\frac{y_A+y_B}2,\;\frac{z_A+z_B}2\right)\)
Метод с использованием координат радиус-векторов концов отрезка
Трактовка векторов в алгебре позволяет составить формулу для расчета координат середины отрезка.
Дано: прямоугольная система координат Oxy, в которой лежат произвольные точки A(xA,yA) и B(xB,yB), а также C, делящая пополам отрезок, ограниченный A и B.
По определению действий над вектором в геометрии:
\((1)\;\overrightarrow{OC}=\frac12\times\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\)
В рассматриваемой ситуации в точке C пересекаются диагонали параллелограмма с основаниями: \(\overrightarrow{OA},\;\overrightarrow{OB} \).
Это значит, что С — это центр диагоналей.
Поскольку координаты радиус вектора совпадают с координатами точки, имеем: \(\overrightarrow{OA}=\left(x_A,\;y_A\right),\;\overrightarrow{OB}=\left(x_B,\;y_B\right) \).
Произведем подстановку в формулу (1):
\(\overrightarrow{OC}=\frac12\times\left(\overrightarrow{OA}+\overrightarrow{OB}\right)=\left(\frac{x_A+x_B}2,\;\frac{y_A+y_B}2\right) \).
Получили формулу определения координат середины отрезка, находящегося в декартовой системе координат:
\(\left(\frac{x_A+x_B}2,\;\frac{y_A+y_B}2\right)\)
По аналогично схеме можно вывести формулу для расчета координат центра отрезка, лежащего в пространстве:
\(\left(\frac{x_A+x_B}2,\frac{y_A+y_B}2,\;\frac{z_A+z_B}2\right)\)
Примеры решения задач
Дано: в декартовой системе координат имеются точки M(5,4) и N(1,−2). Найти координаты середины отрезка MN.
Решение:
Пусть точка O — центр MN. Тогда вычислим ее координаты, подставив в формулы:
\(x_O=\frac{x_A+x_B}2=\frac{5+1}2=\frac62=3\)
\(y_O=\frac{y_A+y_B}2=\frac{4+\left(-2\right)}2=\frac{4-2}2=\frac22=1\)
Точка O имеет координаты (3,1).
Ответ: (3,1).
Дано: треугольник ABC лежит в прямоугольной системе координат. Известны координаты его вершин: A(7,3), B(−3,1), C(2,4). Вычислите длину медианы АМ.
Решение:
Поскольку АМ является медианой треугольника ABC, то точка М делит сторону ВС на два равных отрезка, то есть является серединой отрезка ВС. Отсюда можно вычислить координат точки М:
\(x_М=\frac{x_В+x_С}2=\frac{-3+2}2=\frac{-1}2=-0,5\)
\(y_М=\frac{y_В+y_С}2=\frac{1+4}2=\frac52=2,5\)
Теперь, зная координаты начала и конца отрезка АМ, применим формулу нахождения расстояния между точками:
\(AM=\sqrt{\left(x_M-x_A\right)^2+\left(y_M-y_A\right)^2}=\sqrt{\left(-0,5-7\right)^2+\left(-2,5-3\right)^2}=\sqrt{-7,5^2+\left(-5,5\right)^2}=\sqrt{56,25+30,25}=\sqrt{86,5} \).
Ответ: √86,5.
Заметили ошибку?
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Нашли ошибку?
Текст с ошибкой:
Расскажите, что не так