Как найти площадь прямоугольника

Что такое прямоугольник

Определение

Прямоугольник — параллелограмм, в котором все углы прямые.

В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые, тогда четвёртый угол в силу теоремы о сумме углов многоугольника также будет равен 90°. 

Свойства

  1. Противоположные стороны попарно равны.
  2. Диагонали равны. Они пересекаются и точкой пересечения делятся пополам.
  3. Биссектриса отсекает от прямоугольника равнобедренный треугольник.
  4. Стороны прямоугольника являются его высотами.
  5. Квадрат диагонали прямоугольника равен сумме квадратов двух его соседних сторон.
  6. Около любого прямоугольника можно описать окружность, при этом ее диаметр численно равен диагонали прямоугольника.

Признаки

Параллелограмм является прямоугольником при выполнении одного из следующих условий:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Диагонали параллелограмма равны.
  2. Сумма квадратов соседних сторон параллелограмма равна квадрату диагонали.
  3. Все углы параллелограмма равны.

Формулы для нахождения площади

Через две стороны

Площадь прямоугольника через две стороны можно вычислить по формуле:

\(S=ab\)

где a, b — соседние стороны прямоугольника.

Через диагонали и синус угла между ними

Для того, чтобы найти площадь прямоугольника через диагонали и синус угла, нужно воспользоваться формулой:

\(S=\frac{d^2\sin\alpha}2\)

где \(d \) — диагональ, \(\alpha\) — угол между диагоналями (острый).

Через любую сторону и диагональ

Чтобы определить площадь прямоугольника через любую сторону и диагональ, нужно воспользоваться формулой:

\(S=a\sqrt{d^2-a^2}=b\sqrt{d^2-b^2}\)

где a, b — соседние стороны прямоугольника, d — диагональ.

Через сторону и диаметр описанной окружности

Чтобы узнать площадь прямоугольника через сторону и диаметр описанной окружности, нужно воспользоваться формулой:

\(S=a\sqrt{D^2-a^2}=b\sqrt{D^2-b^2}\)

где a, b — соседние стороны прямоугольника, D — диаметр описанной окружности.

Через сторону и радиус описанной окружности

Вычисление площади прямоугольника через сторону и радиус описанной окружности происходит по формуле:

\(S=a\sqrt{4R^2-a^2}=b\sqrt{4R^2-b^2}\)

где a, b — соседние стороны прямоугольника, R — радиус описанной окружности.

Через сторону и периметр

Чтобы посчитать площадь прямоугольника через сторону и периметр, нужно воспользоваться формулой:

\(S=\frac{Pa-2a^2}2=\frac{Pb-2b^2}2\)

где a, b — соседние стороны прямоугольника, Р — периметр.

Через радиус описанной окружности и синус угла между диагоналями

Способ нахождения площади прямоугольника через радиус окружности и синус угла между диагоналями происходит по формуле:

\(S=\frac{4R^2\sin\alpha}2\)

где \(R\) — радиус описанной окружности, \(\alpha\) — угол между диагоналями (острый).

Насколько полезной была для вас статья?

Рейтинг: 1.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»