Энергия магнитного поля

Что такое энергия магнитного поля

Определение

Энергия магнитного поля — величина, обозначающая работу, затраченную электрическим током в проводнике или катушке индуктивности на образование этого магнитного поля.

Существует зависимость энергии магнитного поля от индуктивности проводника, вокруг которого это поле образовалось. Для обозначения величины используют букву W. Единицами измерения энергии являются Дж/м3 или МГсЭ (Мега Гаусс Эрстеды). К примеру, максимальное значение энергии магнитного поля неодимовых магнитов равно 278-360 Дж/м3, а ферритовых — составляет до 30 Дж/м3.

Описание явления, закон Фарадея

Магнитное поле обладает энергией. Данный факт можно доказать с помощью практического эксперимента. Опыт заключается в исследовании процесса убывания силы тока в катушке при отключении от нее источника тока. Предположим, что до того момента, когда был разомкнут ключ, в катушке имелся ток I, что способствовало образованию магнитного поля. После размыкания ключа катушка и сопротивление соединяются последовательно. В результате самоиндукции ток в катушке будет постепенно уменьшаться. Процесс сопровождается выделением теплоты на сопротивлении. Источник тока отключен, поэтому необходимо определить источник энергии, которая расходуется на тепло. Так как убывает ток и создаваемое им магнитное поле, допустимо говорить о понятии энергии тока или энергии магнитного поля, которое он создает.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда магнитное поле образовано постоянным током, определить место сосредоточения энергии не представляется возможным, так как ток по своему свойству образует магнитное поле, которое в любом случае сопровождается токами. Можно рассмотреть переменное магнитное поле в электромагнитной волне. Такая волна характеризуется наличием магнитных полей в условиях отсутствия токов. Известно, что электромагнитные волны являются переносчиками энергии, что позволяет сделать вывод о существовании энергии в магнитном поле. Таким образом, электрический ток обладает энергией, локализованной в магнитном поле, то есть в среде, окружающей этот ток. Согласно закона сохранения энергии, на примере эксперимента вся энергия магнитного поля выделяется в виде Джоулева тепла на сопротивлении R. 

Определение

Электромагнитная индукция представляет собой явление возникновения электрического тока, поля или электрической поляризации при изменении с течением времени магнитного поля или в процессе движения материальной среды в нем.

С помощью опытов с катушками и магнитом Фарадею удалось обнаружить зависимость между величиной электродвижущей силы и скорости, с которой перемещаются катушки или магнит. Данное наблюдение послужило основанием для выявления закономерности и формулировки закона электромагнитной индукции.

Определение

Закон электромагнитной индукции: электродвижущая сила пропорциональна скорости изменения магнитного потока, проходящего через контур.

\(E=\frac{-\Delta \Phi }{\Delta t}\)

E — электродвижущая сила; \(\Delta \Phi\) — изменение магнитного потока; \(\Delta t\) — время, в течение которого происходило изменение магнитного потока.

Единицами измерения ЭДС являются вольты магнитного потока — веберы. \(\Delta\) определяет разницу между конечным и начальным параметром.

Формула закона Фарадея содержит знак минуса. К данному выражению применено правило Ленца, как пояснение того, что ток, образовавшийся в результате индукции, в любом случае противоположно направлен образующему его магнитному потоку. Магнитное поле индукционного тока всегда препятствует магнитному потоку из внешнего источника. По смыслу правило схоже с законом сохранения энергии.

Связь энергии магнитного поля и его основных характеристик

На примере длинного соленоида можно рассмотреть проявление энергии магнитного поля. Предположим, что поля является однородным и сосредоточено внутри соленоида. В таком случае, для нахождения силы тока можно воспользоваться формулой:

\(I=\frac{Hl}{N}\)

Здесь H — напряженность магнитного поля соленоида; l — длина соленоида; N — число витков соленоида.

В случае эксперимента с соленоидом:

\(L=\mu \mu _{0}n^{2}Sl\)

Здесь \(\mu\) — магнитная проницаемость сердечника соленоида; S — площадь сечения соленоида; n=Nl.

Таким образом:

\(E_{m}=\frac{\mu \mu _{0}N^{2}Sl}{2l^{2}}\frac{H^{2}l^{2}}{N^{2}}=\mu \mu _{0}\frac{H^{2}}{2}Sl=\mu \mu _{0}\frac{H^{2}}{2}V\)

Как правило, роль энергетической характеристики магнитного поля играет такой параметр, как плотность энергии магнитного поля:

\(\omega =\frac{E_{m}}{V}=\mu \mu _{0}\frac{H^{2}}{2}\)

Данное выражение справедливо в случае любого магнитного поля, несмотря на характер его происхождения. Формула определяет энергию магнитного поля в единице его объема. Если имеется магнитоизотропная среда, то уравнение можно преобразовать, таким образом:

\(\vec{B}=\mu \mu _{0}\vec{H}\)

Следовательно:

\(\omega =\frac{BH}{2}\)

В случае неоднородного магнитного поля целесообразно разбить его на элементарные объемы (dV), то есть малые объемы, в которых магнитное поле считается однородным. Энергия магнитного поля, заключенная в рассматриваемых объемах, составляет:

\(dE_{m}=\omega dV\)

При этом суммарная энергия магнитного поля равна:

\(E_{m}=\int_{V}^{}{\omega dV}\)

Интегрированию в данном случае подлежит весь объем, занимаемый магнитным полем.

От чего зависит величина

Существует ряд некоторых ограничений в применении формулы для расчета энергии магнитного поля. При записи выражения выполнялось несколько условий:

  • индуктивность контура, а также магнитная проницаемость вещества стабильны;
  • вся энергия источника тока трансформируется в энергию магнитного поля.

Перечисленные условия справедливы лишь в случае вакуума, то есть при \(\mu\)=1. Если контур с током поместить в вещество, то необходимо принимать во внимание следующие параметры:

  • намагничивание вещества, что способствует его нагреву;
  • объем и плотность вещества в магнитном поле могут изменяться даже при стабильной температуре.

Таким образом, магнитная проницаемость вещества \(\mu\), изменяющаяся при перепадах температуры и плотности среды, не может оставаться постоянной в процессе намагничивания. Также работа источника ЭДС не полностью трансформируется в энергию магнитного поля. В том случае, когда объем вещества изменяется в малой степени, сохраняется стабильной температура среды, внешняя работа затрачивается на увеличение энергии магнитного поля \(E_{m}\) и на теплоотдачу Q, чтобы поддерживать постоянную температуру.

Работа внешних сил, в нашем случае источника тока, совершаемая над телом при квазистатическом изотермическом процессе, соответствует увеличению свободной энергии тела. Таким образом, формула определяет часть свободной энергии намагниченного вещества, которая обладает связью с магнитным полем:

\(\omega =\frac{E_{m}}{V}=\mu \mu _{0}\frac{H^{2}}{2}\)

При малом количестве теплоты Q, относительно энергии поля \(E_{m}\), справедливо равенство:

\(-E_{m}=A_{i}\)

Согласно условию стабильности магнитной проницаемости вещества, выполняется линейная зависимость:

\(\vec{B}=\mu \mu _{0}\vec{H}\)

Выражение применимо при рассмотрении ситуаций в условиях вакуума для парамагнетиков и диамагнетиков. Но при опытах с ферромагнетиками магнитная индукция и напряженность магнитного поля связаны нелинейно, даже при T=const.

Чему равна энергия, как найти, формула

Согласно закону сохранения энергии, вся энергия магнитного поля по итогам опыта преобразиться в Джоулево тепло на сопротивлении R. Величину уменьшения энергии магнитного поля определяют в виде работы индукционного тока:

\(-\Delta E_{m}=A_{i}\)

Результирующие значение силы тока, индукции магнитного поля и энергии равны нулю. Можно принять начальную величину энергии за \(E_{m}\) и записать, что:

\(-E_{m}=A_{i}\)

Элементарная работа, которую совершает ток, вычисляется, таким образом:

\(dA_{i}=\varepsilon _{i}Idt=-LI\frac{dI}{dt}dt=-LIdI\)

Здесь dt — время, в течение которого совершается работа током индукции; \(\varepsilon _{i}=-L\frac{dI}{dt}\) — ЭДС самоиндукции.

В связи с изменением тока от I до 0, получим:

\(E_{m}=-\int dA_{i}=L\int_{I}^{0}{IdI}=\frac{LI^{2}}{2}\)

Записанная формула справедлива для любого контура и определяет, каким образом связаны энергия магнитного поля, сила тока и индуктивность контура. Можно сопоставить выражение с уравнением кинетической энергии поступательного движения:

\(E_{k}=\frac{mv^{2}}{2}\)

Данное соотношение демонстрирует связь индуктивности контура с его инерционностью. Если тело совершает движение, то его невозможно остановить без энергетических превращений. По тому же принципу, нельзя прекратить электрический ток без трансформации энергии.

Насколько полезной была для вас статья?

Рейтинг: 1.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»