Как составить диаграмму Эйлера-Венна

Диаграмма Эйлера-Венна — что из себя представляет, где используется

Определение

Диаграмма Эйлера-Венна представляет собой геометрическую схему, предназначенную для представления моделей множеств и схем их взаимосвязей.

Благодаря данной диаграмме, приводят наглядное объяснение разных фактов о множествах. При таком методе универсальное множество представляют в виде прямоугольника, а для изображения подмножества используют круги. Широкое применение диаграммы Эйлера-Венна нашли в таких дисциплинах, как математика, логика, менеджмент, финансы и другие прикладные направления.

Примечание

Способы отражения отношений между множествами ранее отличались. Джон Венн применял в качестве обозначения множеств замкнутые фигуры, а Эйлер – круги.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Диаграммы Эйлера-Венна представляют собой важный частный случай кругов, которые изображал Эйлер. На диаграммах представлены все 2n комбинаций n свойств, что является конечной булевой алгеброй. Если n = 3, на диаграмме, как правило, изображают три круга с центрами, которые расположены в углах равностороннего треугольника, и совпадающими радиусами, ориентировочно равными длине сторон этого многоугольника.

Принципы построения, как изобразить множества

Определение

Построить диаграмму Эйлера-Венна – значит, составить большой прямоугольник, представляющий универсальное множество U, и разместить внутри него замкнутые фигуры в качестве обозначения множеств.

В том случае, когда требуется строить на диаграмме не более трех множеств, целесообразно использовать круги. Для изображения свыше четырех множеств применяют эллипсы. Пересечение фигур соответствует максимально общему случаю, согласно условиям задачи, и изображается должным образом на диаграмме.

Если предположить, что диаграмма содержит круг, обозначающий множество А, его центральная часть будет отражать истинность выражения А, а область вне круга – обозначать ложь. Те области, которые соответствуют истинным значениям, заштриховывают, что является отражением логической операции на диаграмме.

Согласно алгебре логики, конъюнкция множеств А и В соответствует истине в том случае, когда истинны оба эти множества. При этом на диаграмме отмечают участок пересечения множеств.

Применяя диаграммы Эйлера-Венна, доказывают любые алгебраические законы с помощью их графического изображения. Алгоритм построения:

  • изображение диаграммы с заштрихованными множествами, которые представлены в левой части выражения;
  • чертеж другой диаграммы с заштрихованными множествами, расположенными в правой части уравнения;
  • сравнение заштрихованных областей на диаграммах: если это одна и та же область, то можно говорить об истинности тождества.

Данные диаграммы являются эффективным методом визуализации операций с множествами. Отдельные множества изображают в виде кругов, а универсальное множество представляют прямоугольником.

Дополнение множества

Множество
Источник: avatars.mds.yandex.net
Формула множества
Источник: avatars.mds.yandex.net

Объединение множеств

Объединение множеств
Источник: avatars.mds.yandex.net
Формула объединения множеств
Источник: avatars.mds.yandex.net

Пересечение множеств

Пересечение множеств
Источник: avatars.mds.yandex.net
Формула пересечения множеств
Источник: avatars.mds.yandex.net

Разность множеств

Разность множеств
Источник: avatars.mds.yandex.net
Формула разности множеств
Источник: avatars.mds.yandex.net

Симметричная разность множеств

Симметричная разность множеств
Источник: avatars.mds.yandex.net
Формула симметричной разности множеств
Источник: avatars.mds.yandex.net

Использование диаграмм Эйлера-Венна для доказательства логических равенств

В качестве доказательства логического равенства подходит способ построения диаграмм Эйлера-Венна. Для примера можно представить доказательства следующего выражения: ¬(АvВ) = ¬А&¬В. Равенство демонстрирует запись закона де Моргана. В первую очередь следует наглядно изобразить левую часть уравнения. Для этого необходимо последовательно заштриховать серым цветом все круги, то есть применить дизъюнкцию. Отобразить инверсию можно с помощью закрашивания черным цветом области вне этих кругов.

Диаграмма Эйлера-Венна
Источник: urok.1sept.ru
Использование диаграммы Эйлера-Венна
Источник: urok.1sept.ru

Далее следует визуально представить правую часть выражения. Последовательность действий в этом случае такова: необходимо заштриховать область, в которой отображается инверсия (¬А), с использованием серого цвета и аналогично закрасить область ¬В; отобразить конъюнкцию в виде пересечения этих серых областей. Результат такого наложения будет окрашен черным цветом.

Наложение
Источник: urok.1sept.ru
Наложение множеств
Источник: urok.1sept.ru
Наложение 2
Источник: urok.1sept.ru

На рисунке видно, что области, в которых отображены левая и правая части уравнения, равны друг другу. Таким образом, закономерность доказана.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Изучая тему поиска информации в глобальной сети Интернет, нельзя обойтись без примеров поисковых запросов, в которых использованы логические связки. Как правило, их смысл аналогичен союзам «и», «или» из русского языка. Принцип действия можно понять, если изобразить логические связи с помощью графической схемы или диаграммы Эйлера-Венна.

Задачи
Источник: urok.1sept.ru

Как логические операции связаны с теорией множеств

Используя диаграммы Эйлера-Венна, принято наглядно демонстрировать связь логических действий и теории множеств. Операции логики можно задать с помощью таблиц истинности. В этом случае следует руководствоваться общим принципом.

На диаграмме в виде области круга под названием А отображают истинность определения А, то есть теоретически круг А обозначает все элементы, которые включены в данное множество. Таким образом, область за пределами круга А будет обозначать ложь соответствующего утверждения.

Понимание, какая область диаграммы отражает логическую операцию, возникает после того, как будут заштрихованы только те области, в которых значения логической операции на наборах А и В соответствуют истине. К примеру, импликация истинна при (00, 01 и 11).

Необходимо заштриховать сначала область за пределами пары пересекающихся кругов в соответствии со значениями А=0, В=0. Затем закрасить область в круге В, которая относится к значениям А=0, В=1, и область, соответствующую и кругу А, и кругу В, то есть участок пересечения, отображающий значения А=1, В=1. Эти три области в комплексе являются графическим представлением логической импликации.

Примеры задач с решением

Диаграммы Эйлера-Венна могут содержать три и более круга. Преимуществом данного графического способа представления выражений является его высокая эффективность и наглядность. К примеру, можно изобразить диаграмму пересечений букв из русского, латинского и греческого алфавита:

Пример задачи
Источник: avatars.mds.yandex.net

Понять суть методики удобно на практике. Можно решить несколько задач с применением диаграмм Эйлера-Венна.

Задача 1

По условию есть таблица поисковых запросов. В ней представлены страницы по некоторому сегменту. Требуется определить, сколько страниц в тысячах будет отображаться по запросу «Эсминец». Следует отметить, что запросы выполнялись практически в одно время, поэтому набор страниц с искомыми словами не менялся в процессе выполнения запросов.

Запрос
Источник: urok.1sept.ru

Решение

Допустим, что:

Ф – является числом страниц (в тысячах) в соответствии с запросом «Фрегат»;

Э – является числом страниц (в тысячах) в соответствии с запросом «Эсминец»;

Х – представляет собой число страниц (в тысячах) по запросу, в котором присутствует «Фрегат» и отсутствует «Эсминец»;

У – определяет число страниц (в тысячах) по запросу, в котором указано слово «Эсминец» и отсутствует слово «Фрегат».

Диаграмма для каждого поискового запроса будет иметь следующий вид:

Запросы
Источник: urok.1sept.ru

Исходя из информации по диаграммам, получим:

Х+900+У = Ф+У = 2100+У = 3400

Таким образом:

У = 3400-2100 = 1300

Э = 900+У = 900+1300= 2200

Ответ: по запросу «Эсминец» будет найдено 2200 страниц

Задача 2

Класс состоит из 36 учеников. Дети ходят на занятия в рамках математического, физического, химического кружка. Факультатив по математике посещают 18 учащихся, по физике – 14, по химии – 10. Также известно, что 2 ученика ходят на все три кружка, 8 – на математику и физику, 5 – на математику и химию, 3 – на физику и химию. Необходимо определить количество учеников, которые не посещают ни одного кружка.

Решение

Решить данную задачу можно с помощью удобного и наглядного метода в виде кругов Эйлера. Наибольшим кругом следует обозначить множество всех учащихся класса. Внутри этой окружности необходимо изобразить пересекающиеся множества в виде учащихся на факультативе по математике (М), физике (Ф), химии (Х).

Допустим, что:

МФХ – является множеством учеников, каждый из которых ходит на занятия во все три кружка;

МФ¬Х – определяет множество учащихся, которые посещают факультативы по математике и физике, но не ходят на занятия по химии.

¬М¬ФХ – представляет собой множество людей, каждый из которых посещает химический факультатив, но отказался от дополнительных занятий по физике и математике.

По аналогичному принципу можно ввести множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Согласно условиям задачи, пара учеников записаны во все три кружка. Поэтому в область МФХ требуется вписать число 2. Исходя из того, что 8 учащихся посещают факультативы по математике и физике, а из них двое школьников ходят во все кружки, то в области МФ¬Х следует отметить 6 человек (8-2). Аналогичным способом можно определить число учеников в остальных множествах:

Круги Эйлера
Источник: urok.1sept.ru

Далее требуется определить сумму учеников по всем областям:

7+6+3+2+4+1+5=28

Таким образом, всего 28 учащихся посещают факультативные занятия.

Поэтому:

36 – 28 = 8

Ответ: 8 учеников из класса не посещают ни одного кружка.

Задача 3

Когда закончились зимние каникулы, преподаватель поинтересовался у учеников, кто из них посещал театр, кино или цирк. Всего в классе 36 человек. По полученной информации, два ребенка не были ни в кино, ни в театре, ни в цирке. Кино посетили 25 школьников, театр – 11, цирк – 17. И в кино, и в театр сходили 6 человек, и в кино, и в цирк – 10, и в театр, и в цирк – 4. Необходимо посчитать, какое количество учащихся из класса посетили и кино, и театр, и цирк.

Решение

Предположим, что х представляет собой число учеников, которые посетили и кино, и театр, и цирк. В таком случае, можно изобразить диаграмму и определить число школьников для каждой области:

Круги
Источник: urok.1sept.ru

Ответ: 1 ученик побывал и в кино, и в театре, и в цирке.

Насколько полезной была для вас статья?

Рейтинг: 2.75 (Голосов: 4)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»