Как найти двугранный угол

Что такое двугранный угол

Двугранным углом называют геометрическую фигуру, которая сформирована парой полуплоскостей, выходящие из общей прямой.

Заметим, что угол, измеряемый в градусах, разделяющий пару плоскостей, является минимальным из количества двугранных углов, которые сформированы в результате пересечения плоскостей.

Примечание 1

Важно отметить, что по модели двугранный угол может быть острым и тупым. При этом угол, разделяющий две плоскости, является острым. Это необходимо учитывать в решении задач, чтобы избежать путаницы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

угол

Источник: ru.wikipedia.org

Как найти

В поиске ответов на различные примеры из геометрии следует руководствоваться основными понятиями. Введем несколько обозначений для элементов двугранного угла.

Грани двугранного угла представляют собой полуплоскости, которые образовали данный угол.

Ребро двугранного угла является единой прямой для рассматриваемых полуплоскостей.

В процессе измерения двугранных углов используют величины линейных углов, то есть тех, что образованы при пересечении двугранного угла и плоскости, расположенной под прямым углом к ребру рассматриваемого угла. В результате для поиска величины двугранного угла рекомендуется следовать следующему алгоритму действий:

  • следует определить какую-либо точку на его ребре;
  • далее под прямым углом к ребру нужно опустить из определенной ранее точки лучи ко всем граням;
  • угол, который разделяет изображенные лучи, соответствует величине искомого двугранного угла.

Запишем в табличной форме значения двугранных углов, характерные для правильных многогранников:

таблица 

В данном случае следует считать ϕ равным 1+52, то есть золотым сечением.

Виды двугранных углов

Тупой двугранный угол представляет собой такой угол, градусная величина которого превышает значение в 90°.

Тупой двугранный угол:

тупой

Источник: rusinfo.info

Прямой двугранный угол является таким двугранным углом, градусная мера которого соответствует 90°.

Прямой двугранный угол:

прямой 

Источник: rusinfo.info

Острым двугранным углом называют двугранный угол с градусной мерой, равной 90°.

Острый двугранный угол:

острый

Источник: rusinfo.info

Задачи

Задача 1

Имеется геометрическая фигура в виде пирамиды с четырьмя углами и равными между собой ребрами. При этом в основании фигуры расположен квадрат. Требуется определить, чему равен 6cosα , если за α обозначен угол, разделяющий смежные боковые грани.

Решение

Предположим, что искомая пирамида имеет следующее название SABCD. Пусть S играет роль вершины геометрической фигуры, а ее ребра соответствуют а. Тогда, согласно условию задания, требуется найти угол, разделяющий грани SAD и SCD.

задача

Источник: shkolkovo.net

Построим CHSD. Заметим, что:

SAD=SCD

В этом случае AH также играет роль высоты в SAD. Таким образом, исходя из определения:

AHC=α

Заметим, что α является линейным углом, разделяющим грани SAD и SCD. При условии квадратного основания в пирамиде запишем следующее:

AC=a2

Кроме того, имеет место такое равенство:

CH=AH

Высота AH находится в треугольнике с одинаковыми сторонами, равными а. Таким образом:

CH=AH=32a

Воспользуемся теоремой косинусов применительно к AHC:

cosα=CH2+AH2AC22CHAH=136cosα=2.

Ответ: -2.

Задача 2

На рисунке изображено пересечение плоскостей, обозначенных за π1 и π2. В результате образуется общая прямая l с точками M и N. Полученные отрезки MA и MB расположены перпендикулярно по отношению к прямой l, а также принадлежат плоскостям за π1 и π2 соответственно. При этом справедливы следующие равенства: MN = 15; AN = 39; BN = 17; AB = 40. Необходимо вычислить 3cosα , где α является углом, разделяющим плоскости  π1 и π2 .

Решение

задача 2

Источник: shkolkovo.net

Заметим, что треугольник AMN обладает прямым углом, тогда:

AN2=AM2+MN2

В результате:

AM2=392152=362

Прямоугольным также является треугольник BMN. В таком случае:

BN2=BM2+MN2

Исходя из этого, получим:

BM2=172152=82

Воспользуемся теоремой косинусов применительно к треугольнику AMB:

AB2=AM2+MB22AMMBcosAMB

Таким образом:

402=362+822368cosAMBcosAMB=512

Исходя из того, что угол α, разделяющий плоскости, является острым, а угол AMB определяется как тупой, получим следующее равенство:

cosα=512

3cosα=54=1,25

Ответ: 1,25.

Задача 3

На рисунке изображен квадрат ABCD. В точке О пересекаются диагонали. Точка S расположена за пределами квадратной плоскости, а SOABC. Требуется вычислить угол, разделяющий плоскости ASD и ABC, при условии, что SO = 5, а AB = 10.

Решение

задача 3

Источник: shkolkovo.net

Геометрические фигуры в виде треугольников с прямыми углами SAO и SDO являются идентичными, согласно паре сторон и углу, который их разделяет:

SOABCSOA=SOD=90

AO = DO

Записанные выше равенства являются справедливыми, так как в точке O пересекаются диагонали квадрата, а SO служит общей стороной.

AS=SDASD

ASD является равнобедренным. Точка K делит пополам AD. В таком случае SK представляет собой высоту в треугольнике ASD, а OK обозначает высоту в треугольнике AOD. Таким образом, плоскость SOK расположена под прямым углом к плоскостям ASD и ABC. Можно сделать вывод о том, что SKO  является линейным углом, который соответствует искомому двугранному углу.

задача 4

Источник: shkolkovo.net

Рассмотрим треугольник SKO:

OK=12AB=1210=5=SO

Таким образом, SOK является равнобедренным прямоугольным треугольником. Тогда:

SKO=45.

Ответ: 45.

Насколько полезной была для вас статья?

У этой статьи пока нет оценок.

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»