Площадь параллелограмма, построенного на векторах

Как определить площадь параллелограмма, построенного на векторах

Определение

Площадь параллелограмма, построенного на векторах, определяется как произведение их длин на синус угла между ними.

Если по условию задачи даны длины этих векторов, то вычисление площади параллелограмм не вызывает затруднений. Для этого необходимо воспользоваться формулой:

\( S=\left|a\right|\times\left|b\right|\times\sin\beta\)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое модуль векторного произведения

Векторным произведением некоторых векторов m и n является третий вектор p.

\(\overline p\;=\left|\overline m\right|\times\left|\overline n\right|\\\)

Определение

Модуль векторного произведения, то есть скаляр вектора p определяется как произведение модулей векторов m и n, на синус лежащего между ними угла α. Это определение записывается математическим языком так:

\(\left|p\right|=\left|m\right|\times\left|n\right|\times\sin\alpha\\\)

Все три эти вектора образуют правую тройку. Это значит, что если привести их к общему началу из конца третьего вектора (р), то кратчайший поворот от первого вектора (m) ко второму вектору (n) будет совершаться против часовой стрелки.

Допустим, вектора заданы координатами:

\(\overline m=\left\{x_1;y_1;z_1\right\}\\\)

\(\overline n=\left\{x_2;y_2;z_2\right\}\\\)

В декартовой системе координат их произведение можно будет вычислить по формуле:

\(\left[m\times n\right]=\left\{y_1\times z_2-y_2\times z_1;z\times x_2-z_2\times x_1;x_2\times y_2-x_2\times y_1\right\}\\\)

Примечание

В этом виде запомнить формулу достаточно сложно. Значительно проще представить ее в другой форме:

\(\left[m\times n\right]=\begin{vmatrix}i&j&k\\x_1&y_1&z_1\\x_2&y_2&z_2\end{vmatrix}\\\\\\\)

Как рассчитать площадь обычного параллелограмма

Пример

Рассмотрим еще один пример. Дан параллелограмм с длиной сторон a – 5 см, b – 6 см и углом между ними равным 30^0\\\\\\. Необходимо найти его площадь.

Для решения необходимо заменить длины сторон векторными значениями a и b. После этого воспользуемся формулой определения площади параллелограмма, построенного на векторах.

\(S=\left|5\right|\times\left|6\right|\times\sin30^0=30\times\frac12=15\\\\\\\)

Таким образом, площадь данного параллелограмма равна 15 квадратным сантиметрам.

Пример решения задачи в трехмерном пространстве

Пример

Даны два вектора, а и b, имеющие в декартовой системе следующие координаты:

\(\left\{4,\;2,\;6\right\}\\\\\\\)

\(\left\{4,\;8,\;11\right\}\\\\\\\)

Требуется найти площадь, образуемого ими параллелограмма.

Для решения требуется найти векторное произведение заданных векторов:

\(\left[a\times b\right]=\begin{vmatrix}i&j&k\\4&2&6\\4&8&11\end{vmatrix}=i\begin{vmatrix}2&6\\8&11\end{vmatrix}-j\begin{vmatrix}4&6\\4&11\end{vmatrix}+k\begin{vmatrix}4&2\\4&8\end{vmatrix}=i\left(2\times11-48\right)-j\left(44-24\right)+k\left(32-8\right)=-26i-20j+24k=\left\{-26;-20;24\right\}\\\\\\\)

Для полученного отрезка, имеющего направление, найдем модульное значение. Оно и будет площадью параллелограмма, построенного на векторах а и b.

\(S=\sqrt{\left|26\right|^2}+\sqrt{\left|20\right|^2}+\sqrt{\left|24\right|^2}=\sqrt{676+400+576}=\sqrt{1652}\\\\\\\)

После извлечения квадратного корня получаем, что площадь параллелограмма равна 40,64.

Пример решения в двухмерном пространстве

Пример

Вычислить площадь параллелограмма, заданного векторами a и b. Их координаты:

\(\left\{4;\;5\right\}\\\\\\\)

\(\left\{-7;\;8\right\}\\\\\\\)

Оба эти вектора лежат в одной плоскости. Поэтому третью их координату принимаем за 0. Тогда площадь данного параллелограмма будет равна:

\(S=\sqrt{32+35}=\sqrt{67}\approx8.2\\\\\\\)

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»