Радиус окружности, описанной около правильного шестиугольника

Что такое окружность, описанная около правильного шестиугольника

Правильный шестиугольник — выпуклый шестиугольник, у которого все стороны и углы равны.

шестиугольник

Описанная около многоугольника окружность — это окружность, которая содержит все вершины выпуклого многоугольника. Ее центром является точка пересечения срединных перпендикуляров к сторонам многоугольника, обычно её обозначают прописной буквой О.

центр описанной окружности

Как найти радиус, формула

Для расчетов используем формулу радиуса окружности, описанной около правильного многоугольника.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Формула 1

\(R=\frac a{2\sin\left(\frac{360^0}{2n}\right)}\)

где R — радиус описанной окружности правильного многоугольника,

а — длина стороны многоугольника,

n — количество сторон (или вершин) многоугольника.

Подставим в формулу значение n=6. 

\(R=\frac a{2\sin\left(\frac{360^0}{2n}\right)}=R=\frac a{2\sin\left(\frac{360^0}{2·6}\right)}=\frac a{2\sin\left(\frac{360^0}{12}\right)}=\frac a{2\sin30^0}.\)

Так как \(sin30^0=\frac12\), то \(R=\frac a{2\sin30^0}=\frac a{2·\frac12}=\frac a1\). Получаем формулу радиуса окружности, описанной около правильного шестиугольника:

Формула 2

R=a

где R — радиус описанной окружности,

а — сторона правильного шестиугольника.

радиус описанной окружности
Примечание 1

Эту же формулу модно найти и другим способом. Биссектрисы углов правильного шестиугольника разбивают его на шесть равных равносторонних треугольников. Точка пересечения биссектрис у правильного шестиугольника совпадает с точкой пересечения срединных перпендикуляров и является центром описанной окружности. Расстояние между центром окружности и вершиной шестиугольника равно радиусу описанной окружности и стороне равностороннего треугольника. Этот отрезок также равен стороне шестиугольника.

шесть равных треугольников

Свойства окружности, описанной около шестиугольника

  1. У правильного шестиугольника центры вписанной и описанной окружностей совпадают.
  2. Диаметр описанной окружности совпадает с большей диагональю правильного шестиугольника и равен его удвоенной стороне.
диаметр описанной окружности шестиугольник

Площадь круга, ограниченного описанной окружностью

Чтобы вычислить площадь круга, ограниченного описанной окружностью правильного шестиугольника, используем стандартную формулу площади круга.

Формула 3

\(S=π·r^2\)

где S — площадь круга,

π — коэффициент, число π,

r — радиус круга.

Так как радиус круга равен стороне правильного шестиугольника, около которого описана окружность, получаем формулу:

Формула 4

\(S=π·а^2\)

где S — площадь круга,

π — коэффициент, число π,

а — сторона правильного шестиугольника.

Пример расчета радиуса окружности, описанной около шестиугольника

Задача

Дано: около правильного шестиугольника описана окружность. Меньшая диагональ правильного шестиугольника равна \(5\sqrt3 см.\)

Найти: радиус описанной окружности.

Решение: Обозначим сторону правильного шестиугольника как а. Тогда его меньшая диагональ будет \(а\sqrt3 см\). Следовательно, а=5 см. Радиус окружности, описанной около правильного шестиугольника равен его стороне. R=5 см.

Ответ: 5 см.

Насколько полезной была для вас статья?

Рейтинг: 2.33 (Голосов: 3)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»