Как найти среднюю линию треугольника
Средняя линия треугольника — отрезок, соединяющий середины двух его сторон.
Свойства и признаки
Признак средней линии: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок называется средней линией данного треугольника.
Свойства:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
- Равна половине длины основания и параллельна ему.
- Отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
- Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным треугольником.
- Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.
Формула для расчета
Теорема
Средняя линия треугольника параллельна основанию и равна её половине.
\(A_1C_1=\frac12AC\)
Доказательство
Дано:
\(\triangle ABC\)
\(A_1C_1\)- средняя линия
Доказать:
\(A_1C_1\parallel AC\)
\(A_1C_1=\frac12AC\)
Рассмотрим \(\triangle BA_1C_1\) и \(\triangle BAC\):
\(\left\{\begin{array}{l}\angle B\;-\;общий\\\frac{BA_1}{BA}=\frac{BC_1}{BC}=\frac12\end{array}\right.\)
Из этого следует, что треугольники подобны по двум пропорциональным сторонам и углу между ними.
Следовательно, \(\angle BA_1C_1=\angle BAC\) , как соответственные элементы подобных треугольников. Следовательно \(A_1C_1\parallel AC\) по признаку параллельности.
Кроме того, из подобия следует, что \(\frac{A_1C_1}{AC}=\frac12\)
Следовательно, \(A_1C_1=\frac12AC\)
Утверждение доказано.
Примечание
Данная формула одинаково работает для любого треугольника: равнобедренного, равностороннего (правильного).
Задачи на использование теоремы
Задача 1
В прямоугольном треугольнике ABC проведены средние линии: MN; NP; MP. При этом MN=NP=2. Найти площадь треугольника ABC.
Рассмотрим прямоугольный треугольник NMP:
\(S_{\triangle NMP}=\frac12\times MN\times NP=\frac12\times2\times2=2\)
Все маленькие треугольники равны, следовательно \(S_{\triangle ABC}=2\times4=8\)
Ответ: 8
Задача 2
Площадь треугольника ABC равна 8. MN — средняя линия. Необходимо вычислить площадь треугольника BMN.
\(S_{\triangle BMN}=\frac14S_{\triangle ABC}=\frac14\times8=2\)
Ответ: 2
Задача 3
В треугольнике ABC точки M, N, K – середины сторон AB, BC, AC соответственно, MN=12, MK=10, KN=8. Необходимо узнать периметр треугольника ABC.
Средняя линия равна половине основания, следовательно находим:
MN = 12 ⇒ AC = 24
MK = 10 ⇒ BC = 20
KN = 8 ⇒ BA = 16
Значит, \(P_{\triangle ABC}=24+20+16=60\)
Ответ: 60
Заметили ошибку?
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Нашли ошибку?
Текст с ошибкой:
Расскажите, что не так