Окружность, вписанная в трапецию

Что такое окружность, вписанная в трапецию

Окружность можно вписать в любой треугольник. Однако это утверждение нельзя применить к любому из четырехугольников.

Прежде чем приступить к рассмотрению темы о вписанной в трапецию окружности, дадим определение вписанной окружности.

Вписанной в многоугольник окружностью называют окружность, которая касается каждой из сторон многоугольника в одной точке. Многоугольник в этом случае называют описанным около окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Теорема 1

Теорема о вписанной окружности: в произвольный выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Доказательство: пусть имеется произвольный четырехугольник MNKL и вписанная в него окружность. Обозначим точки касания окружности со сторонами четырехугольника как O, P, R, S.

blobid1640540801596.jpg

Если касательные проведены из одной точки, то отрезки, построенные от этой точки до точки касания с окружностью, равны. Тогда KS=KR, LS=LO, MO=MP, NR=NP. Вычислим суммы противоположных сторон: MN+KL=(MP+NP)+(KS+LS) и NK+ML=(NR+KR)+(MO+LO).

Из равенства отрезков получим, что MN+KL= NK+ML.

Примечание 1

Четырехугольник считают выпуклым, если он расположен в одной полуплоскости относительно линии, проходящей через любую из его сторон.

blobid1640540881866.jpg

Трапеция является выпуклым четырехугольником. При этом две параллельные стороны трапеции называют основаниями, а две остальные — боковыми сторонами.

Тогда необходимым условием наличия вписанной окружности в трапецию будет равенство суммы ее оснований и боковых сторон.

blobid1640540926565.jpg

Для обратного случая — окружность описана вокруг трапеции, трапеция должна быть равнобедренной, то есть ее боковые стороны должны быть равными.

Рассмотрим свойства вписанной в трапецию окружности.

Из свойства биссектрис при боковых сторонах трапеции следует, что радиусы вписанной окружности, проведенные к вершинам боковой стороны и лежащие на биссектрисах, образуют прямой угол.

blobid1640541031991.jpg
Примечание 2

Биссектрисы трапеции пересекаются под углом 90°.

Радиус вписанной окружности, проведенный к точкам касания, перпендикулярен сторонам трапеции (по свойству перпендикулярности радиуса и касательной).

blobid1640541076703.jpg

Из предыдущего свойства вытекает следующее: радиус вписанной окружности равен половине высоты трапеции, а диаметр — полной длине высоты.

Примечание 3

Высота трапеции — прямая, опущенная от одного основания к другому под прямым углом.

blobid1640541115436.jpg

Где находится центр такой окружности

Для построения и решения задача необходимо определить, где расположен центр вписанной окружности.

Примечание 4

Центр окружности, вписанной в трапецию, лежит в точке пересечения биссектрис.

blobid1640541181182.jpg

Биссектрисы трапеции пересекаются под прямым углом, отсюда можно сделать следующий вывод: треугольники MON и KOL — прямоугольные.

Формулы для расчета

Основными характеристиками любой окружности являются радиус и диаметр.

Точка касания окружности радиусом R и боковой стороны делит последнюю на два отрезка v и q. Тогда формула для вычисления радиуса будет иметь вид:

Формула 1

\(R=\sqrt{v\cdot q}\)

Если трапеция равнобедренная и сумма длин оснований равна двум длинам боковой стороны, радиус вписанной окружности:

Формула 2

\(R=\frac{\sqrt{v\cdot q}}2\)

Диаметр равен длине двух радиусов, значит:

Формула 3

\(D=2\sqrt{v\cdot q}\)

Формула радиуса через высоту трапеции:

Формула 4

\(R=\frac h2\)

Диаметр через высоту:

Формула 5

D=h

Если значение высоты неизвестно, ее можно найти через длины диагоналей \(d_1\) и \(d_2\) и оснований a и b трапеции:

Формула 6

\(h=\frac{d_1\cdot d_2}{a+b}\sin\gamma\)

где γ — угол между диагоналями трапеции.

Площадь вписанной окружности через параметры трапеции (высоту, отрезки боковой стороны):

Формула 7

\(S=\pi R^2=\frac14\pi h^2\)

или

Формула 8

 \(S=\pi R^2=\pi\cdot v\cdot q\)

В случае равнобедренной трапеции:

Формула 9

 \(S=\pi R^2=\frac{\pi\cdot v\cdot q}4\)

Периметр вписанной окружности через параметры трапеции:

Формула 10

 \(P=2\mathrm{πR}=\mathrm{πh}\)

или 

Формула 11 

Если трапеция равнобедренная:

Формула 12

 \(P=2\mathrm{πR}=\mathrm\pi\sqrt{\mathrm{vq}}\)

Приведем формулы для вычисления произвольной и равнобедренной трапеции через радиус вписанной окружности R.

Площадь трапеции:

Формула 13

 \(S=\frac{a+b}2h=(a+b)R\)

Полусумма оснований a и b равна средней линии l, тогда:

Формула 14

 \(S=2\cdot l\cdot R\)

Площадь равнобедренной трапеции:

Формула 15

\( S=\frac{4R^2}{\sin\alpha}\)

где α — угол между основанием и боковой стороной.

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Заметили ошибку?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»